Protein Secondary Structure Prediction Using
Artificial Neural Networks

Dilip Antony Joseph
(CS00294, Department of Computer Science and Engineering
Indian Institute of Technology, Madras

September 10, 2002

Contents
1 Introduction 4
1.1 Structure of Proteins . . . . . . . ... ... ... .. ..... 4
1.2 Why Secondary Structure(SS) Prediction? . . ... ... ... 4
1.3 Methods of Secondary Structure Prediction . . . . . . .. . .. 6
2 Artificial Neural Networks 6
2.1 An Artificial Neuron . . ... ... ... ... ......... 7
2.2 Feed Forward Networks . . . . . . ... .. ... ... ..... 7
2.3 Training The Network . . . . .. ... .. ... ... ... .. 8
3 Input and Output Encoding 8
3.1 Output Representation . . . . ... ... ... ......... 9
3.2 Input Representation . . . . ... ... ... .. ........ 9
3.2.1 What does PSIBLAST do? . . . . ... ... ...... 9
3.2.2 Windowing the Sequence . . . . . . . .. ... .. ... 10
3.2.3 Encoding at the Two ends of the Sequence . . . . . . . 10
4 Measuring Prediction Accuracy 11
4.1 Q3 Score . . . ... e 11
4.2 CASP Test Sets . . . . . . . . .. .. . .. .. 11



Training Data

5.1 Choosing the Sequences - PDB SELECT . . . ... ... ...
5.2 FASTA Sequence and Secondary Structure Information . . . .
53 PSIBLASTing . . . . . .. . . .. .
5.4 Balanced Training Set . . . . . . .. ... ...

Prediction Using Feed Forward Neural Networks

6.1 Network Architecture . . . . . . . ... ...
6.2 Network Parameters . . .. ... ... ... ... .......
6.3 Implementation . . . ... .. ... ... ... ...,
6.4 Limitations . . . ... ... .. oo oo

Jury Predictors

Results and Observations
8.1 Prediction using Feed Forward Neural Networks . . . . . . ..

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6

Unbalanced Training Set . . . . . ... .. .. ... ..
Training on 1740 sequences . . . . . . . .. ... ...
Training on 6529 sequences . . . . ... .. ... ...
Effect of Window Size . . . . . . ... .. ... .. ..
Effect of Number of Training Epochs . . . . . ... ..
Effect of Learning Rate and Momentum Factor

8.2 Jury of Networks . . . . . . .. . ... ... ..

Conclusion

12
12
12
13
13

13
13
14
15
16

16

16
16
17
17
20
20
21
23
24

24



Abstract

Proteins are the machinery of life. Deciphering the structure of
proteins can help in the design of new drugs and medicines. The
various experimental methods to determine the complex 3D struc-
ture of proteins are often very time-consuming and sometimes, even
impossible. Therefore computers are used to predict the Secondary
Structure of proteins. The Secondary Structure thus predicted can
give insights into the 3D structure. Of the various methods used in
Secondary Structure Prediction, Artificial Neural Network based pre-
dictors have proven to be the most effective. In this paper, the focus is
on the implementation of a Feed Forward Neural Network based Pro-
tein Secondary Structure predictor. A Jury of Networks is also used
to improve the prediction efficacy. The various parameters affecting
the network training and prediction are analyzed.



1 Introduction

Proteins are the machinery of life. They are involved in all bodily functions -
be it catalysis of reactions, transport of nutrients or transmission of signals to
various parts of the body. Understanding the structure and specific functions
of proteins can lead to the design of new drugs which can effectively combat
the diseases plagueing humanity.

It is known that the structure of the protein determines its function. In
aqueous environments, the proteins fold up into unique complex 3D struc-
tures. So the onus over the years has been on deciphering the structure of
proteins, and thus to determine their biological functions.

1.1 Structure of Proteins

Proteins are long polypeptide chains made up of 20 different amino acids.
The sequence of amino acids occurring in the protein determines the Primary
Structure (Figure 1). The Tertiary (Figure 3) or 3-dimensional structure
is determined by the complex folding process that takes places in aqueous
media. This tertiary structure is the factor which determines the protein
function. Intermediate to the primary and tertiary structures, the Secondary
Structure (Figure 2) classifies each amino acid in the amino acid sequence as
- Alpha Heliz (H) or Beta Strand (E) or Coil (C). The Secondary Structure
gives insights into the manner in which the protein folds to form the unique
3D structure.

1.2 Why Secondary Structure(SS) Prediction?

Knowledge of the 3D structure of proteins is a very important factor in
medical research. The experimental methods (eg. crystallography) used to
determine the protein tertiary structure are very time consuming and some-
times impossible. It is easier to first determine the Secondary Structure from
the amino acid sequence. Using the secondary structure thus determined,
we can predict the tertiary structure through methods like threading. The
tertiary structure can give insights into the functions of the protein.

As a result of large scale genome sequencing projects, the sequence-
structure gap is rapidly increasing. The number of known amino acid se-
quences greatly exceeds the number of known structures. Thus there is a
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Figure 1: Primary Structure. A Sequence of the 20-letter Amino Acid Al-
phabet

Figure 2: Alpha Helices and Beta Strands. Alpha Helices are shown in Green
and Beta Strands in Orange.

Figure 3: Tertiary Structure of Amylase. The 3D folding of various alpha
helices, beta sheets and coils can be seen



Amino acid sequence KKTAIFAGDGIGPEIVAAARQVLD

59 sequence EEBSTTHHHHHHHHHHHHHHHT

Figure 4: The Neural Network maps the Amino Acid String to the corre-
sponding Secondary Structure String.

need for computational methods that can predict the protein structure, in a
reasonable amount of time.

1.3 Methods of Secondary Structure Prediction

Existing methods for Secondary Structure prediction from amino acid se-
quence involve the use of Hidden Markov Models (HMMs) or Artificial Neural
Networks (ANNs). Neural Networks that leverage the evolutionary informa-
tion are currently on the top in terms of prediction accuracy. In this paper,
the focus is on the use of Feed Forward Neural Networks in Secondary Struc-
ture prediction.

2 Artificial Neural Networks

Artificial Neural Networks are computational models which have the ability
to adapt or learn, to generalize, or to cluster or organise data. They attempt
to model the functioning of the brain. In protein Secondary Structure pre-
diction, the neural network learns to predict the correct Secondary Structure
string given the Amino acid string (Figure 4). The basic unit of an Artifi-
cial Neural Network is a neuron. These neurons interact with other neurons
through weighted connections. Using an ANN for prediction involves three
phases:
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2.1 An Artificial Neuron

The structure of a single neuron is shown in Figure 5.

The neuron performs a weighted sum over all its inputs. The output of the
neuron is calculated by applying an activation function on this weighted sum.
This output is then passed on as input to the other neurons. The most com-
monly used activation function is the Sigmoid function

2.2 Feed Forward Networks

Feed Forward Neural Networks consist of neurons arranged into distinct lay-
ers. There are no connections between any two neurons in the same layer.
The network consists of an nput layer, an output layer and a variable num-
ber of hidden layers (Figure 6). The input, applied at the input layer, is
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Figure 6: A Feed Forward Neural Network with a single Hidden Layer

propagated in the forward direction, through the hidden layers, uptill the
final output layer. The output of a neuron is not fed back into any neuron
in any previous layer, at any stage.

2.3 Training The Network

Training a Neural Network consists of presenting to the network, a set of
known input-output pairs. The weights of the network are adjusted so as
to minimize the error between the desired output and the output calculated
by the network. An epoch consists of presenting all the training pairs in the
set to the network a single time. Training consists of many epochs, with
the order of training pairs randomly jumbled at each epoch. The network
weights adjustment is carried out using the popular Back Propagation rule
for Feed Forward Networks.

3 Input and Output Encoding

The representation of the input and output of the Neural Network is an
important factor to be considered during the network design. The Neural
Network is trained to recognise and adapt to patterns in the input. So the
representation of the input plays an important role in determining the efficacy



of the network.

3.1 Output Representation

The network classifies the current residue to be predicted into 3 distinct
classes:

e Alpha Helix - H
e Beta Strand - E
e Coil or Loop - C

Orthogonal Encoding is used to represent the 3 output states: H - 100, E -
010, C - 001

3.2 Input Representation

Orthogonal encoding for the input needs 20 numbers per residue. For ex-
ample, Alanine(A) is 10000 00000 00000 00000, Leucine(L) is 01000 00000
00000 00000, etc. Orthogonal encoding ensures that the distance between the
encodings of any two residues is identical. Therefore, the order of assigning
codes to the 20 amino acids is irrelevant.

It has been observed that using evolutionary information in the prediction
process leads to higher prediction accuracies. In the predictor implemented
in this project, the input consisted of PSIBLAST[13] [1/] profiles and not
the orthogonal encoding of the amino acid sequence.

3.2.1 What does PSIBLAST do?

PSIBLAST stands for Position Specific Iterative Basic Local Alignment Search
Tool. 1t is a freely available tool to perform a multiple alignment of a given
sequence against a specified protein database. PSIBLAST produces a profile
matrix which gives the frequency of each of the 20 amino acids in each po-
sition of the sequence. Therefore, for each amino acid position, PSIBLAST
produces 20 numbers usually in the range -7 to 7. These values after being
scaled down to the range 0 to 1 using the sigmoid function, are used as input
to the neural network. Evolutionary information comes into play here as a
result of the multiple alignment.
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Figure 7: The Neural Network predicts the state of the central residue of the
window. This window is slid over the entire sequence.

3.2.2 Windowing the Sequence

The state of an amino acid (H, E or C) depends not only on the nature of
the residue, but also on the surrounding residues. So the network is fed with
a window of residues. In most of the predictors developed in this project, a
window size of 15 was used. When fed with this window of 15 amino acids,
the network predicts the Secondary Structure state of the central residue of
the window(Figure 7).

It is known that, in most cases, the state of the amino acid is also influ-
enced by amino acids far away from it in the sequence. A window of 15 will
not be able to capture these long range relationships. Increasing the window
size is not a solution. Using larger window sizes often leads to overfitting.

3.2.3 Encoding at the Two ends of the Sequence

A suitable encoding scheme has to be designed to handle the cases when the
window of residues spans outside the sequence. This happens for the first and
last seven residues (assuming window size of 15). To handle these cases, the
number of values needed to represent a sequence position was increased to
21. For actual amino acid positions, the input consisted of the 20 numbers
obtained from the PSIBLAST profile. The 21%¢ unit was taken to be 0.0.
The positions outside the amino acid sequence were encoded as 00000 00000
00000 00000 1 (20 Os followed by a 1).
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4 Measuring Prediction Accuracy

4.1 Q3 Score

The most common measure of the prediction accuracy is the Q& score. The
Q3 score is calculated as follows:

Q3 = Fetldfe 4 100
where

N, = Number of residues correctly predicted in the Helix State
N, = Number of residues correctly predicted in the Strand State
N, = Number of residues correctly predicted in the Coil State
N; = Total number of residues in the sequence

Prediction accuracy is judged on the basis of the average Q3 score of a
set of test sequences.

The individual percentages of the alpha helices, beta strands and coils
predicted correctly is also noted. Coils are the easiest to predict, while beta
strands with the their long range interactions are the most difficult. The
individual percentages of each residue are monitored to ensure that a good
percentage of all three types of residues are predicted correctly.

4.2 CASP Test Sets

CASP stands for Critical Assessment of Techniques for Protein Structure
Prediction. It is a community wide experiment held every two years, aimed
at establishing the current state of the art in protein structure prediction,
identifying what progress has been made, and highlighting where future effort
may be most productively focussed [15].

The protein sequences used in the CASP3 (1998) and CASP4(2000) pre-
diction contests were used to test the efficacy of the predictor. 34 and 33
sequences of the CASP3 and CASP4 prediction sets respectively, for which
the correct secondary structure details were available, were used to test the
predictor.
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5 Training Data

The neural networks have to be trained with existing data before they can
be used for predicting the secondary structure of new protein sequences. The
following data were needed for each training sequence considered.

e Sequence information in FASTA format
e Secondary Structure String (H,E and C classes)
o PSIBLASTI[13] Profile

5.1 Choosing the Sequences - PDB SELECT

It is important that the network be trained on a comprehensive set of se-
quences, covering all possible kinds of folds. To increase the effectiveness of
the training, the train set constructed should not contain sequences which
are very similar to each other. Keeping in mind this factor, the training set
used here was picked from the PDB SELECT Database [11][12]. The PDB-
SELECT database is a subset of the structures in the PDB[10] that does
not contain highly homologous sequences. The database contains two lists
of protein sequences which listed protein sequences with mutual sequence
similarity less than 25% and 90% respectively. Subsets of these two lists
were used to train the network. The results and observations are discussed
in Section 8.

5.2 FASTA Sequence and Secondary Structure Infor-
mation

The PDB ids of the chosen sequences were parsed from the PDB SELECT
database. The FASTA and Secondary Structure information corresponding
to these ids were automatically retrieved from the PDB at http://www.resb.org.
The Secondary Structure was parsed out directly from the HTML file which
contained the sequence details. Separate PERL scripts and C programs were
written to perform the above tasks.
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5.3 PSIBLASTing

The networks used for prediction were fed with the PSIBLAST profiles of
the sequences. It was thus necessary to obtain the PSIBLAST profiles of the
sequences under consideration before the network training was started. This
was done with the help of the stand-alone version of PSIBLAST obtained
from http://www.ncbi.nlm.nih.gov/BLAST/. A custom PERL script handled
the automatic PSIBLASTing of all the selected sequences, as well as the
parsing of the generated log files to obtain the required profiles. The profiles
obtained were stored in files named PDBID.mt.

5.4 Balanced Training Set

Balancing the training set in terms of the number of residues present in each
of the three states affects the efficacy of the predictor. Naturally occurring
proteins contain a large proportion of Coil states. As a result, it is easiest to
predict the coil states. Helices come next in terms of ease of prediction. If the
sequences are not carefully chosen, it is highly possible that the proportion of
beta strands and alpha helices in the training set are very low when compared
to that of the coils. In such a case, the network will not be able to identify
helices and strands. This undesired behaviour observed in the predictor is
described in Section 8.

6 Prediction Using Feed Forward Neural Net-
works

A Feed Forward Neural Network based Secondary Structure Predictor was
implemented in the first phase of this project. The details of the predictor
are as follows.

6.1 Network Architecture

The predictor consisted of two different Neural Networks. Both networks
consisted of 3 layers - input layer, hidden layer and output layer.

The first network was fed with fixed size windows of PSIBLAST profiles
of the input amino acid sequence. The output layer of this network used
orthogonal encoding to represent the three different classes - H, E and C.

13
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Figure 8: ‘Cleaning up’ — It is most likely that the residue marked coil(C) in
the middle of sequence of Alpha Helices(H) has been wrongly predicted. The
second level network outputs the corrected Secondary Structure Sequence.

The state of the central amino acid in the window formed the output of the
network. The states of all the amino acids in the sequence are predicted by
the first network by sliding the window along the length of the sequence.
This output of the first network, i.e. a string of H, E and Cs corresponding
to the predicted secondary structure are fed into the second neural network.
The function of the second network is to ‘clean up’ the output of the first
network (Figure 8). It has been observed that the length of the helix and
strand segments predicted by single network predictors are often very small
compared to the helix and strand segments observed in nature. Double Neu-
ral Network predictors aim to increase the efficacy with respect to the length
distribution of the coils and strands.

6.2 Network Parameters
Squashing function

All the neurons in both networks used the following squashing function:

f(@) = =

Layers

Both networks used in the predictor consisted of 3 layers. The details of
the various layers are shown in Table 1. The Learning Rate and Momentum
Factor were varied over different training runs and the performance of the
network was studied for each case.
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Network 1
Number of Layers 3
Number of Neurons in Input Layer 315
Number of Neurons in Hidden Layer | 75
Number of Neurons in Output Layer | 3

Network 2
Number of Layers 3
Number of Neurons in Input Layer 60
Number of Neurons in Hidden Layer | 60
Number of Neurons in Output Layer | 3

Table 1: Layer details of the Protein Secondary Structure Predictor based
on double Feed Forward Neural Networks

Weights

The weights of the two networks used in the predictor were initialized with
random values between -0.005 and +0.005. This range was intuitively chosen
to avoid the saturation of the neuron outputs to 0 or 1, after applying the
logistic function.

6.3 Implementation

The Feed Forward Neural Network based predictor program was written in
C++. An Object oriented approach was followed in the design of the pro-
gram. A Layer of neurons was modelled as a class. The Neural Network class
contained an array of Layer objects, along with functions like FeedForward
and Backpropagate. The Predictor class prepares the Protein Sequence input
in the right format and feeds it to the neural network objects. Specialized
predictors can be further inherited from the generic Predictor class.

The objecti-oriented approach proved to be very helpful in debugging the
code. The Neural Network class was thoroughly tested and debugged before
being used in the Predictor class. Thus for the Predictor class, the Neural
Networks were just 2 blackboxes. This modular approach also makes it very
easy to extend the Neural Network. For example, adding a new layer to the
network takes only 2 additional lines.
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6.4 Limitations

Feed Forward Neural Networks use a fixed window (say, of size 15) of amino
acids to predict the state of the central residue. However, it is well known
that the secondary structure state of an amino acid is influenced even by
amino acids far away in the sequence. The complex 3D folding of proteins can
result in sequence-wise distant amino acids occurring very close to each other
in the tertiary structure. These long distance relationships are very easily
observed in beta strands. Therefore, a window of size 15 cannot capture the
complete information needed to predict the secondary structure state of the
central amino acid. Increasing the window size leads to overfitting, which is
discussed in Section 8.

7 Jury Predictors

A jury of networks based predictor consists of many independently trained
networks. The assignment of various secondary structure states to the amino
acid residues is based on the majority of vote among the independent pre-
dictors.

The predictors forming the jury may be of various types and sizes. There
can be specialized predictors in the jury, which can utilize biological infor-
mation to predict a particular state (say alpha helices or beta strands only)
more accurately . The simple majority vote decision may be replaced by a
custom weighting scheme which takes into account the observed accuracies
of the individual predictors constituting the jury.

In the jury based predictor developed in this project, only Feed Forward
Neural networks trained on different training sets and at different learning
rates were used. The scores obtained by this predictor is discussed in Section
8.2.

8 Results and Observations

8.1 Prediction using Feed Forward Neural Networks

The predictor was trained on three different subsets of the PDB SELECT
database. Various parameters of the predictor - learning rate, momentum
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factor, window size - were varied. The results obtained are summarized in
this section.

8.1.1 TUnbalanced Training Set

The first training set chosen consisted of 30 sequences randomly chosen from
the PDB SELECT 25 database (sequence similarity < 25%). The Q3 scores
obtained on testing the network on the CASP 3 and CASP 4 sequences were
below 60%. The coil states predicted correctly accounted for the bulk of the
Q3 score. Not a single beta strand was predicted! This was due to the very
low proportion of beta strands in the training set.

A second training set of 60 sequences was constructed by adding sequences
with a large number of residues in the beta strand state. The so-trained
network gave similar Q3 scores, but alpha helices were not predicted at all!
In this case, the balance was tilted by the presence of a large number of beta
strands.

The third training set of 115 sequences was chosen such that the propor-
tions of residues in the three states - H, E or C, were approximately equal.
This network gave better results with the CASP 3 and CASP 4 test sets. The
results are summarised in 2. We can see that the second ‘cleanup’ neural net-
work improved the Q3 score only marginally. But the marginal increase was
accompanied by an increase in the percentage of residues correctly predicted
to be in the beta strand state, usually the most difficult state to predict.

8.1.2 Training on 1740 sequences

A training set with 1740 sequences was constructed from the PDB SELECT
25% list by removing the sequences which were present in the CASP 3 and
CASP 4 test sets. Each training epoch on this training set took approxi-
mately 15 minutes, leading to a 2 day training period for 200 epochs. An
IBM PC with Pentium 4 1.4 GHz processor and 512 MB of RAM was used
in all training runs. The scores of this predictor on the CASP 3 and CASP
4 test sets are shown in Table 3. The Q3 scores have increased significantly
from around 66% to 75%. This is because the network encountered a wider
variety of sequences and their distinct secondary structures in its training
phase.

17



Number of Training Sequences : 115
Window Size : 15 Total Number of Residues : 16204
Learning Rate : 0.005 Momentum factor : 0.9
CASP 3
After Network 1 After Network 2
average Q3 Score ‘ 67.47 | average Q3 Score ‘ 68.19
% of correctly predicted residues in each state
Alpha Helix 74.77% | Alpha Helix 76.19%
Beta Strand 54.91% | Beta Strand 56.46%
Coil 66.60% | Coil 66.25%
CASP 4
After Network 1 After Network 2
average Q3 Score ‘ 67.47 | average Q3 Score ‘ 68.25
% of correctly predicted residues in each state
Alpha Helix 77.49% | Alpha Helix 78.04%
Beta Strand 60.19% | Beta Strand 61.06%
Coil 66.20% | Coil 66.46%

Table 2: Performance of the Predictor trained on a balanced training set
consisting of 115 sequences taken from PDB SELECT.
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Number of Training Sequences : 1740
Window Size : 15 Total Number of Residues : 349083
Learning Rate : 0.005 Momentum factor : 0.9
CASP 3
After Network 1 After Network 2
average Q3 Score ‘ 76.79 | average Q3 Score ‘ 77.27
% of correctly predicted residues in each state
Alpha Helix 80.06% | Alpha Helix 78.24%
Beta Strand 66.69% | Beta Strand 68.04%
Coil 78.50% | Coil 80.09%
CASP 4
After Network 1 After Network 2
average Q3 Score ‘ 74.85 | average Q3 Score ‘ 76.17
% of correctly predicted residues in each state
Alpha Helix 82.62% | Alpha Helix 82.79%
Beta Strand 59.54% | Beta Strand 61.18%
Coil 78.25% | Coil 80.59%

Table 3: Performance of the Predictor after training on 1740 sequences from
the PDB SELECT 25% list. The CASP 3 and CASP 4 sequences found in
the PDB SELECT were removed.
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Number of Training Sequences : 6529
Window Size : 15 Total Number of Residues : 1436264
Learning Rate : 0.005 Momentum factor : 0.9
CASP 3
After Network 1 After Network 2
average Q3 Score ‘ 76.79 | average Q3 Score ‘ 77.27
% of correctly predicted residues in each state
Alpha Helix 80.06% | Alpha Helix 78.24%
Beta Strand 66.69% | Beta Strand 68.04%
Coil 78.50% | Coil 80.09%
CASP 4
After Network 1 After Network 2
average Q3 Score ‘ 74.85 | average Q3 Score ‘ 76.17
% of correctly predicted residues in each state
Alpha Helix 82.62% | Alpha Helix 82.79%
Beta Strand 59.54% | Beta Strand 61.18%
Coil 78.25% | Coil 80.59%

Table 4: Performance of the Predictor after training on 6529 sequences from
the PDB SELECT 90% list. The CASP 3 and CASP 4 sequences found in
the PDB SELECT were removed.

8.1.3 Training on 6529 sequences

The next training set used consisted of 6529 sequences from the PDB SE-
LECT 90 % list, with the sequences present in CASP 3 and CASP 4 removed.
The presence of sequences that are upto 90 % similar to each other, under-
mines the effectiveness of this training set. Each epoch on this training set
took 50 minutes. Training for 300 epochs was completed in a period of 10
days. The results obtained are shown in Table 4.

8.1.4 Effect of Window Size

The window size chosen affects the efficacy of the predictor to a great extent.
It was observed that a window of 13 was unable to capture much of the
contextual information needed to predict the secondary structure state of the
central residue of the window. It gave Q3 scores of 64.64 and 64.98 for CASP
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Number of Training Sequences : 1740
Window Size : 13 Total Number of Residues : 349083
Learning Rate : 0.005 Momentum factor : 0.9
CASP 3
After Network 1 After Network 2
average Q3 Score ‘ 70.56 | average Q3 Score ‘ 64.64
% of correctly predicted residues in each state
Alpha Helix 74.24% | Alpha Helix 68.98%
Beta Strand 52.29% | Beta Strand 43.50%
Coil 76.75% | Coil 72.00%
CASP 4
After Network 1 After Network 2
average Q3 Score ‘ 70.18 | average Q3 Score ‘ 64.93
% of correctly predicted residues in each state
Alpha Helix 75.55% | Alpha Helix 71.79%
Beta Strand 54.92% | Beta Strand 44.20%
Coil 74.14% | Coil 69.40%

Table 5: Performance of the Predictor after training with a window size of
13 on 1740 sequences from the PDB SELECT 25% list. The CASP 3 and
CASP 4 sequences found in the PDB SELECT were removed. The efficacy
of the network was found to be much lower than the networks trained with
a window size of 15.

3 and CASP 4 respectively . Using a window size of 17 lead to overfitting of
the training data. The CASP 3 and CASP 4 test sets registered Q3 scores of
69.30 and 69.80 respectively. However, the predictor gave 100% results when
predicting the sequences in the training set. Therefore, a window size of 15
was chosen to avoid the overfitting problem. Tables 5 and 6 summarize the
scores obtained for training runs with window sizes of 13 and 17 respectively.
Figure 9 shows the performance of the network when using window sizes of
13, 15 and 17.

8.1.5 Effect of Number of Training Epochs

The number of training epochs directly affects the performance of the net-
work. The network was seen to adapt to the training data after the very

21



Number of Training Sequences : 1740
Window Size : 17 Total Number of Residues : 349083
Learning Rate : 0.005 Momentum factor : 0.9
CASP 3
After Network 1 After Network 2
average Q3 Score | 69.30 | average Q3 Score | 64.32
% of correctly predicted residues in each state
Alpha Helix 67.67% | Alpha Helix 62.95%
Beta Strand 56.66% | Beta Strand 49.06%
Coil 75.93% | Coil 71.70%
CASP 4
After Network 1 After Network 2
average Q3 Score ‘ 69.80 | average (Q3 Score ‘ 65.16
% of correctly predicted residues in each state
Alpha Helix 78.39% | Alpha Helix 70.87%
Beta Strand 58.81% | Beta Strand 47.83%
Coil 65.16% | Coil 69.7%

Table 6: Performance of the Predictor after training with a window size of
17 on 1740 sequences from the PDB SELECT 25% list. The CASP 3 and
CASP 4 sequences found in the PDB SELECT were removed. The efficacy
of the network was found to be much lower than the networks trained with
a window size of 15. However the network predicted the sequences in the
training set with 100 % accuracy. This can be attributed to overfitting.
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first training epoch. The CASP 3 and CASP 4 Q3 scores were fixed as the
performance measure of the predictor. The performance of the network grad-
ually increased with the number of training epochs. However after a certain
number of epochs, the performance was seen to saturate. It is not useful to
train the network beyond this saturation point.

In the training runs carried out in this project, the networks were dumped
to disk files at user specified epoch intervals. The network files were used to
study the variation of the network performance with the number of training
epochs. The results of this experiment can be seen in Figures 9.

Only the networks(dumped on the disk) which gave the maximum Q3
score (corresponding to the highest point in the plots) were further used in
the predictor.

8.1.6 Effect of Learning Rate and Momentum Factor

The Learning Rate and Momentum Factor also play a part in determining
the effectiveness of the training. The learning rate and momentum factor
affect the training process through the following weight correction equation:

where

e [ = Learning Rate

M = Momentum Factor

dW;;(t) = Correction to be applied to the connection weight from neu-
ron j to neuron ¢ at time ¢

g; = Error Gradient at neuron %
e y; = Input to neuron ¢ from the output of neruon j
e { = Time

A network trained at a very low learning rate will take a very long time
to converge to its minimum (possibly local) error point. A very high learn-
ing rate may cause the network to fluctuate around the minimum position;
sometimes never converging. A learning rate of 0.005 was found to be give
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Number of Predictors in Jury : 9
CASP 3
Q3 Score 78.05
% of Alpha Helices predicted correctly | 74.77%
% of Beta Strands predicted correctly | 66.89%
% of Coils predicted correctly 87.21%
CASP 4
Q3 Score 77.49
% of Alpha Helices predicted correctly | 74.39%
% of Beta Strands predicted correctly | 69.56%
% of Coils predicted correctly 86.47%

Table 7: Performance of a Jury of Predictors on the CASP 3 and CASP 4
Test Sets

good results in the training runs conducted in this project. The performance
of the network on learning rates of 0.0001, 0.005 and 1.0 are shown in Figure
10.

8.2 Jury of Networks

A Jury of Networks based predictor was observed to give better results dur-
ing the predictions. On testing with the CASP 3 and CASP 4 sets, the jury
gave a Q3 score of 78.05 and 77.49 respectively. The results are summarized
in Table 7. Figures 11 and 12 show the amino acid sequence and the cor-
respondence between the predicted structure and the actual structure for 2
different proteins.

9 Conclusion

A Feed Forward Neural Network based Protein Secondary Structure predic-
tor was implemented as part of the project. The efficacy of the network
was adjudged on the basis of the Q3 scores obtained for the CASP 3 and
CASP 4 test sets. Various parameters of the predictor - window size, learn-
ing rate and momentum factor were varied and the predictor performance
was measured. A jury of networks based predictor was constructed from
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Figure 9: Variation of Predictor performance on the CASP 3 test set with
number of training Epochs. The plots for the three window sizes — 13, 15
and 17 are shown here.
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Figure 10: Variation of Network with learning rates of 0.0001, 0.005 and 1.0.
A window size of 15 was used in all the three cases. The Q3 scores shown
above correspond to the CASP 3 test set. The network trained at a learning
rate of 0.005 attains a Q3 score of 77.27 in just after 50 training epochs. At
a rate of 0.0001, the network learns very slowly and reaches a Q3 score of
73.3 after 250 epochs. The network trained at a very high learning rate of
1.0 gave the highest Q3 score of 67.12 after 100 epochs. The difference in the
time spans of the three graphs is due to the sudden stoppage of the network,
due to time constraints.
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COCCCCCCCCCeCCCCeCCrrRRRRECCCCCHAARHAREAAACCCEEEECCCHAAACT
CCCCCCCCCCCCCCCCCCCCCEEEEECCCCCCHHHHHHHAHICCCCCEEECCCHIHACC

FCCECHEHHHAHCHARHCHAREHHAAEARERAACCCCCCCEEEEECCERRHAACHEA
CCCCCCHHHHHCCHIHHHHHHHIHHTHHACCCCCCCEEEECCCERCHHTIIII

HAHRACCCCCHAHRAARAARARARARACCCCCCRERREECCHEHRHARHARHCCAARC
HCCCCOCCCHHHHHHHTHHHHTHHTCCCCCCCEEEEEECCCHIHHHHHHICCCCCCCC

CCCHHARHNERAARRANECCCCCCCCCCEREERCCCCCCCCCCCCCeCeCielecl
CCCHHHHHHTHHTHTHHICCCCCCCCCCEEEECCCCCCCOCCCOCCCCCCCCCeC

Residues: 230
Q3 Score: 88,6957

Figure 11: A Good Prediction. The first line in each pair of lines gives the
actual Secondary Structure String. The second line displays the predicted
structure. The Q3 score of this sequence is 88.69.

CCCEECCCCCCCEEEEECCCCEEEEECCCCCECCCCCCECEEEECCCCEEEEEECECCCCEEE
CCCCCCCCCCCEEEECCCCCCCCEEEECCCCCEECEECCCCCCCCCCEEEEEEECCCCCCCC

EEEECCCEEECCCCCCEECEEEEC
CEEEEECCCCCCCCCHCCECCEEC

Residues: 87
Q3 Score: 63,5172

Figure 12: A Bad Prediction. The Q3 score of this sequence is 65.52. Many
regions of mismatch between the correct secondary structure and the pre-
dicted one can be observed.

26



independently trained networks .

The jury of Feed Forward Network based predictors developed in this
project obtained accuracies very close to that of the best accuracies obtained
till date. The performance of the predictor in comparison to the best methods
currently existing will be available in December 2002 after the conclusion
of the CASP 5 experiment, for which it is a participant. The prediction
accuracy showed a very high increase when the training set was expanded
from 115 sequences to over 1700 sequences. This accuracy can be further
improved by periodically training the network with newly discovered protein
structures. Inclusion of a protein fold, radically different from the existing
training sequences, into the training set will improve the accuracy of the
predictor on similar proteins discovered in the future. Thus the jury based
predictor developed here can be used to accurately predict the secondary
structure of newly sequenced proteins. This information is very useful in
techniques for deciphering the 3D structure of proteins, which is the ultimate
aim.

Further work needs to be done to improve the prediction accuracies of
Feed Forward Network based juries. The juries can be enhanced by adding
predictors (neural network based or others) which use biological knowledge
about specific folds and structures to a great extent. Bidirectional Recurrent
Neural Networks attempt to overcome the fixed window size of Feed Forward
networks by rolling over the sequence from both ends. A jury consisting of
all these various predictors, weighted in a appropriate manner, can lead to
higher prediction accuracies.
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