An Integrated Approach to Software Engineering using
XML

Dilip Antony Joseph

Indian Institute of Technology, Madras

dilip@peacock.iitm.ernet.in

Abstract

Software Engineering plays a very important
role in the successful completion of large soft-
ware projects. It revolves around the fol-
lowing phases [1] - Requirements Engineer-
ing, Software Architecture and Design, Im-
plementation, Testing, Maintenance. There
are a large number of approaches to man-
age each of the above mentioned phases. In
this paper, an integrated approach to man-
age all the phases through the use of eXtensi-
ble Markup Language (XML) [2] is proposed.
The development of an XML schema for soft-
ware engineering is described. The useful-
ness of XML embedded source code is also
explored here.

1 Introduction

The size of software projects has increased ex-
ponentially over the last few decades. Typ-
ical projects often run into millions of lines
of code. The complex requirement specifi-
cations and design of the software to be de-

veloped have become increasingly difficult to
manage. The mapping between code, design
and requirements is often lost during the de-
velopment process. This causes a big problem
during later project maintenance. In this pa-
per, an integrated approach to software en-
gineering using eXtensible Markup Language
(XML) is proposed. An XML Schema to sup-
port this process is developed in the following
sections. XML embedded documents exem-
plify the approach taken in this paper.

2 A Brief Description of
XML

XML or eXtensible Markup Language is
a W3C-endorsed standard for document
markup. It allows one to define tags which
are used to mark up data in a simple, human-
readable form. The marked-up data is com-
pletely text and can thus be processed by any
application. XML has already found appli-
cation in diverse fields. The use of XML in
software engineering will be illustrated in this

paper. A quick description of XML can be
found in [4].

XML Schemas or vocabularies are defined
for specific applications. These schemas de-
fine the tags used to markup the data. Var-
ious transformations can be applied to the
marked-up data and it can be converted to
a wide variety of formats for display. For
example, the data can be converted into an
application-specific display on web browsers
using Cascading Style Sheets (CSS). Each
XML document has a tree structure, each el-
ement of which can be referenced using the
XPath language. XLinks are used for attach-
ing unidimensional or multidimensional links
to XML documents. These links can be bidi-
rectional and can even refer to non-XML doc-
uments. The use of all these features in soft-
ware engineering will be clearly described in
the following sections.

3 The Software Engineer-
ing Problem

The software engineering problem can be at-
tributed to the following simple reasons:

1. The requirements of today’s software are
highly complex and extremely large in
size.

2. Complex requirements lead to complex
and intricate software architectures.

3. A very large number of lines of code
are produced. In time and cost con-
strained environments, the code is im-
properly documented and often the map-

ping between code, design and require-
ments - i.e. what code implements what
design to satisfy what requirement - is
lost.

4. Software maintenance becomes very
time consuming and costly as a result of
unwieldy code.

The field of software engineering is rich
with tools aimed at alleviating these prob-
lems. These tools often use proprietary solu-
tions and data storage formats. One system
cannot interact with the other management
systems. In many cases, portability between
various systems is desired. This paper pro-
poses an integrated portable solution to the
software engineering problem.

4 XML in the Require-
ments
Phase

Specification

Requirements gathering and specification is
the first phase in any software project. A
formal requirements document is produced
and this forms the basis for the agreement
between the software developer and client.
All requirements are explicitly documented
in the Software Requirements Specification
(SRS) document.

Instead of preparing the document in con-
ventional document processing formats, the
SRS should be prepared in XML marked-up
text format. The XML marked-up SRS can
be easily converted into a variety of formats

<srs author="ABC DEF" date="Feb 1, 2003"
modified="Feb 15, 2003">

<client id="C007" name="James Bond Inc"/>
<project>

<title>Complete Secret Agent Suite</title>
<keywords>secrets, crypto, weapons
</keywords>

<brief>a brief description</brief>

<long>a detailed description</long>
<aim>What is the aim of the project</aim>
<deadline type="hard">

March 1,2003</deadline>

<requirement rld="r1">

<rtitle>Weapons Management</rtitle>
<rdesc>Manage a list of weapons
currently in hand</rdesc>

<spec sld="s1">Specification 1</spec>
<spec sld="s2">Specification 2</spec>
<constraint cld="c1">

This is a constraint

<[constraint>

</requirement>

</broject>
<[srs>

Figure 1: A very simple XML encoded SRS

for publishing in the print media or in elec-
tronic form, using XML Style Sheets (XSLTs)
or Cascading Style Sheets (CSS).

A very simple XML encoded SRS is shown
in Figure 1. This SRS is given only for illus-
tration. Any real XML SRS document will
contain many more tags encompassing mul-
tiple levels of requirements, constraints and
other relevant requirements details. A de-
tailed schema is to be developed.

5 XML
Phase

in the Design

The next phase after Requirements specifica-
tion is the Design. The architecture of the
software is first developed. Details about the
various elements of the architecture are then
filled in. The efficiency and efficacy of the
project depends on the strength of the de-
sign to a large extent. The design document
produced is used by the persons involved in
coding, documentation and maintenance. As
seen in Section 4, it is proposed that the de-
sign document be XML encoded too. An ap-
propriate XML schema can lead to a clear,
unambiguous and modular design document.
The XML marked-up design document will
clearly relate to the XML SRS through the
XLinks and XPointer features of XML.
Data Flow Design, Object-Oriented De-
sign and Functional decomposition are some
popular approaches to software design. The
XML schema for describing the design details
can be based on any of the above approaches
to design. A hybrid schema which combines
the good features of all approaches can also
be attempted. An XML schema for the de-
sign phase has not been completed. However,
Figure 2 gives a general picture of the same.

6 XML in the Implemen-
tation Phase

After good XML encoded Software Require-
ments Specification and Design Document
have been prepared, implementation is the

<designdoc author="ABC DEF" date="Feh 5, 2003"
modified="Feb 10, 2003" xlink:type="simple"
xlink:title="Requirements Spefications"
xlink:href="/projects/secretsuite/srs.xml">
<architecture>

<module id="m1" name="moduleone">
<description> ... </description>

<input type="integer" id="i1">InOne</input>
<inputtype="weaponObj" id="i2">InTwo</input>
<output type="bool">WeaponAvi</output>
<working> ... </working>

<connected_to type="input" told="m2" />
<connected_to type="init" told="m4" />

é/module>
<larchitecture>
</designdoc>

Figure 2: A sample XML encoded Design
Document

next phase to be tackled. The clear and con-
cise specifications greatly enhance the pro-
grammers’ understanding of the problem and
aid in higher throughput. XML can also play
an explicit role in the actual coding process.

Comments are inserted in the source code
to improve the readability and maintainabil-
ity of the code. Tools like javadoc [3] en-
able automatic generation of formatted Ap-
plication Programming Interface (API) doc-
uments from comments written in a specific
format. There exists specialized tools for
other languages too. What is proposed here
is a generic format for embedding comments
in source code. This format will be based on
XML. An advantage of using XML is that
documentation (for example, APIs) can be
produced for any language by the same tool.
The format of the documentation produced
can be suitably adjusted using XML style-
sheets. Any complex unintuitive operations
performed by a particular code fragment can
be described accurately in a particular for-
mat. The inputs and outputs of the vari-
ous modules can be explicitly stated. Vari-
ous invariants or conditions to be satisfied at
particular points of code may also be docu-
mented explicitly. This can be of aid during
debugging, testing and maintenance.

However, the most important advantage of
this method is that it allows us to be more
specific about the code written. Code frag-
ments can be mapped to the specific require-
ment or design detail which led to that piece
of code, using XLinks and XPointers. This
will prove to be a great help to the software
maintenance personnel. A sample XML com-
mented code is shown in Figure 3.

<code_nodul e id="c1121">
<i nput nanme="a" type="int"/>
<i nput name="b" type="int"/>
<out put type="int">The gcd</out put >
<al go nane="Euclid" xlink:type="sinple"
xlink:title="Introduction to Al gorithns"
xlink: href="urn:isbn:81-203-1353-4">
<desc> a brief description </desc>
int gcd (int a, int b) {
if (b=0)
return a
el se
<tricky_code type="recursive">
<desc> expl ai n what happens</desc>
return (gcd (b, a %b));
</tricky_code>

</ code_nodul e>

Figure 3: Illustration of source code with
XML embedded comments

The question arises on how the XML tags
are written in the source code files. The so-
lution as mentioned earlier is to embed them
as comments in the format described by the
specific implementation language. In such an
approach, the source code will have to be pre-
processed before it can be consumed by an
XML parser. A better approach is to directly
write the XML tags into the source code file.
The file can be made into a format under-
standable by the compiler through the appli-
cation of a suitable XSLT transformation to
the source file before compilation.

7 XML
Phase

The testing process is aided by the XML
documents and source files produced in the
earlier phases. Test strategies may be de-

in the Testing

vised based on the concise and clear speci-
fications of the program. Tricky sections of
code marked in the source files may be given
special attention. The invariants (for exam-
ple, loop invariants) may be verified at test
time. The actual test plan, detailing the in-
puts and outputs for the test and the methods
to be followed can be written as a XML docu-
ment. Various sections of this document can
be linked to related sections in the SRS, De-
sign document and source code using XLinks
and XPointers. XML tagged data provide a
concise and accurate method to record the
results of the tests.

8 XML in the Mainte-
nance Phase

Maintenance of software often consumes the
largest amount of time and money. It involves
satisfying new client requirements and fea-
tures, in addition to correcting bugs that may
have escaped the testing phase. Maintenance
also caters to porting the system to a new
environment. All these activities are aided
by the availability of detailed and precise
documents from the previous phases. These
documents can be studied and the necessary
changes are made to the software. These
changes are also documented - in XML of
course!

9 The Integrated Solution

The previous sections highlighted the appli-
cation of XML in each phase of the Soft-

ware Engineering process. All these pro-
cesses are integrated into one common pack-
age. 'This package will consist of special-
ized XML schema definitions for each phase.
Many of the schema elements will be common
across the different phases.

A suite of tools are required for managing
the XML documents produced. The general-
ity of XML allows for easy portability across
different vendors of such software tools. All
the XML documents mentioned in this pa-
per can also be generated by hand using a
simple text editor. But it is certainly not an
easy job. The tools belonging to the package
will process the XML data and will present
a complete Graphical User Interface (GUI)
to manage all the aspects of the software de-
velopment project. For example, a program-
ming tool helps the programmer to insert the
appropriate comments at specific locations in
the code. All XML tags may be hidden from
the programmer’s display if he so desires.

A framework for the integrated XML based
software management package is specified in
Figure 4.

10 Conclusion and Fur-
ther Work

An integrated approach to software develop-
ment and management using XML was pre-
sented in this paper. The application of XML
in each phase of software engineering was
observed. A generic framework encompass-
ing all the phases was proposed. Detailed
and complete XML schemas for the different

Integrated XM. based Software Managenent Framework

Graphical User Interface
Requi r ement s Sof tware .) .
Speqci fication Desi gn Testing Coding || Mai ntenance
XSLT, CSS Legacy Code
XM Schema Styl esheet s Interface
SR; XM DESI GN XML SOURCE TESﬁPLAN L@Y
CCDE XML XM CCDE

Figure 4: An Integrated XML based frame-
work for software management

phases must be built. Appropriate XSLT and
CSS styles sheets must be constructed. The
generic architecture given here must be re-
fined for each phase. A suitable method to in-
corporate legacy code without XML markup,
into the new XML based system must be de-
signed. Future work will concentrate on the
above mentioned goals.

References

1]

Hans Van Vliet. Software engineering -
principles and practice. Wiley. 2002

World Wide Web Consortium - XML.
http://www.w3.org/XML

2]

3]
[4]

Java Home Page. http://java.sun.com

Elliotte Rusty Harold, W. Scott Means,
XML in a nutshell. O’Reilly, 1998

